
A new class of models for computing receptor-ligand 
binding affinities 
Michael K Gilson, James A Given and Martha S Head 

Models for predicting the binding affinities of 
molecules in solution are either very detailed, making 
them computationally intensive and hard to test, or 
very simple, and thus less informative than one might 
wish. A new class of models that focus on the 
predominant states of the binding molecules promise 
to capture the essential physics of binding at modest 
computational cost. 
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“. there is a balance between admitting cnoqh ofthe complexity OJ 
reality into a problemfor it to be interesliny, while keepirE the cbmk 
of reality simple mouth 01 small enough so that it con he modeled. A 
completely undentood (or ‘reduced’) prohlrm is horiq, hut a realistically 
complex one isfimtratiny” (M. Keppy, quoted in [l]). 

‘rhc noncovalent association of molecules in solution 
is of central importance in biology and chemistry, and 
predicting binding affinities is a long-standing problem 
in computational chemistry. A new class of computer 
mod& for predicting binding affinities is now emerging 
from research in a number of laboratories. These ‘prc- 
dominant-states’ models treat solvent implicitly and 
sample over only a modest number of solute degrees of 
freedom. This makes it possible to approximate the 
binding affinity as a sum of contributions from the low 
energy conformations of the complex and the free 
molecules. It is anticipated that these models will be 
computationally efficient while still capturing the 
essential physical chemistry of binding. This article o;r- 
lines the motivation, form and expectations for this class 
of models. 

Why seek new models of noncovalent association? 
Living martcc is neither liquid nor solid. It consists of a 
broad dispersion of organic molecules in’, an aqueous 
medium, organized into highly specific noncovalent com- 
plexes. To understand the physical chemistry, of biologi- 
cal systems, we must first understand the noncovalent 
association of molecules. 

In an important subset of biological association reactions, a 
small ligand, L, binds to a larger receptor molecule, R: 

R+L= RL Equation 1 

The grearer the affinity of the two molecules for each 
other, the lower the standard free energy of binding, AGO. 
Examples of receptor-ligand binding include the recogni- 
tion of substrates by enzymes, the action of biological 
transmitters at their protein receptors, the inhibition of 
enzymes by drugs and, in nonbiological systems, the 
recognition of guest molecules by synthetic hosts. Thus, 
models for receptor-Egand binding are useful in many 
arcas, including enzyme engineering, drug design, and the 
design of synthetic hosts for use in chemical separations. 
Considerable progress has been made in developing com- 
putational methods for predicting receptor-ligand afiini- 
ties. There is still much room for improvement in these 
methods, however. 

Most existing methods of computing free energies of 
binding arc either very detailed or highly simplified [Z]. 
The detailed methods, free-energy simulations, typically 
involve ln&cular dynamics simuiations in which many 
solute and solvent molecules are trcatcd as mobile. They 
therefore involve conformational sampling over thousands 
of degrees of freedom [3-101. Bccausc these methods rep- 
resent the system in derail, it is reasonable to expect them 
to be quite accurate. For the same reason, however, they 
are computationally intensive and arc subject to convcr- 
gcnce problems [11,12]. This, makes it difficult to assess 
the accuracy of free-energy simulations by systematically 
comparing their results with experimental data. 

The simplified methods of computing free energies of 
binding arc essentially phenomenological in nature. They 
avoid convergence problems by using a single, rigid 
conformation of the ligand-receptor complex [2,13-211, 
and involve no conformational sampling at all. The free 
energy of binding is taken to be a sum of cncrgy compo- 
nents associated with ligand-receptor interactions, such 
as hydrogen bonds and hydrophobic contacts. Additional 
fcrnn, analyzed elsewhere [ZZ], account for the changes 
in solute entropy due to the loss of mobility upon binding. 
The various energy components arc typically nor derived 
explicitly from the underlying statistical thermodynamics 
[ZZI, and the parameters of the mod& arc often deter- 
mined from binding data in a statistical manner. Thus 
These models can be difficult to interpret in physical 



terms. Also, it seems inevitable that the accuracy of their 
predictions will be sharply. limited by the neglect of 
conformational flexibility. 

Is it possible to devise models of binding that are 
grounded in statistical thermodynamics, that allow for con- 
formational flcxihility, and that are nonetheless compura- 
tionally tractable? Below, we outline a class of models that 
has these properties. 

A middle ground for models of binding 
Between the extremes of free-energy simulations and 
energy-component models, there lizs a broad middle 
ground with ample room for models of intermediate com- 
plexity that would retain many of the advantages of the 
two approaches described above. One class of models, 
which we term ‘predominant-states models’, combines the 
judicious sclccrion of a modest set of degrees of freedom 
with aggressive conformational sampling to identify the 
low-energy conformations of the complex and of rhc free 
molecules. These conformations can be used to estimate 
the standard free energy of binding (see below). The 
number of explicit degrees of freedom requiring sampling 
is kept small by using implicit models of the solvent. 
In addition, only those parts of the receptor and ligand 
that are most likely to change conformation upon binding 
are treated as flcxihle. Such methods should allow compu- 
tations of binding affinities to converge in a matter of hours 
or days. Mod&of this type. capture more of the physical 
chcmist?y of binding than energy-cnmpo”e”t models and 

is the integral of a Boltzmann factor over all conformations 
of the molecule or complex: 

Equation 3 

Here, U(r) and W(r) are the potential energy and salvation 
energy, respectively, of the molecule or complex in a give” 
conforrnatio” specified by coordinates I. It should he noted 
that for the complex, the coordinates r specify not only the 
conformation of the recepror and the ligand, hut also the 
relative position and orientation of the two molecules. The 
solvent term, W(r), is a potential of mean force that incor- 
porates the influence of solvent molecules. It implicitly 
includes additional configuration integrals over solvent 
degrees of freedom [ZZ]. The largest contributions to the 
configuration integrals in Equation 3 correspond to confor- 
mations with large Boltzmann factors; that is, conformations 
of low energy U + w/. For biomolecules, the binding affinity 
oftcn depends upon the pH of the solvent; in other words, 
upon the chemical potential of the proton. In such cases, 
the thermodynamic link between binding and protonarion 
can he accounted for in Equation 2 by using a binding 
polynomial [ZZ-241. The binding polynomial essentially 
replaces the configuration integrals of K, L and RL by sums 
of configuration integrals over protonntion states [ZZ]. 

cost less computer time than current free-energy simula- / 
tions. The efficiency of these models will make it possible 
to define their accuracy and range of applicability through 
extensive comparisons with experiment. It should there- 
fore be possible to establish well-characterized tools for 
molecular design and the interpretation of experimental 
data. The following sections discuss the theoretical basis 
for predominant-states models of binding, the formulation 
and validation of specific models, and the expected 
obstacles and gains associated with this approach. 

Theoietical basis for predominant-states binding models 
Statistical thermodynamics dictates that the affinity of a 
ligand for a receptor is directly related to configuration 
integrals that range over all possible conformations of the 
separate molecules andof the complex (for review, see 
[ZZ]). The standard free energy of binding can he written 
to within a constant as: 

‘AG”=-RTl”(C”e) Equation 2 ’ 
A few of the possible confortiations of a receptor:ligand camplex 

where C” is the standard concentration, usually 1 jU, R is 
contribute mast of the binding energy. Bottom, a schematic two- 
dimensional surface representing the energy as a function of the 

the gas constant, T is the temperacure and Z,, Z, and Z, 
are the configuration integrals of the receptor, the ligand, 
and the complex, respectively. A configuration integral Z 

canformation af the complex. Although the energy surface is 
complicated. the corresponding Boltzmann factor, top, is.daminated by 
a small set af low-energy conformations, the predominant states. 



Althowh the standard free energy of binding is written -. .- 
compactly in Equation 2, this quantity is difficult to 
evaluate because the integrals range over an enormous 
number of possible conformations. This problem may be 
addressed by fixing many internal coordinates of the 
ligand-receptor system in a single predominant conforma- 
tion and treating only the remaining coordinates as flexi- 
ble. This is a good approximation as long as the 
probability distribution of the fixed coordinates does not 
change much upon binding [ZZ]. It is usually necessary to 
treat the entire small molecule as flexible, although much 
of a large receptor may be treated as rigid. Bond lengths 
and angles may also be treated as fixed if their change 
upon binding is small [ZZ]. Thus intractable configuration 
integrals over hundreds “1 thousands of degrees of 
freedom may often be replaced by tractable integrals over 
a few dozen essential degrees of freedom. 

Some receptors do change conformation significantly upon 
binding a l&and, making it difficult to compute the binding 
energy. However, in many applications, such as computer- 
aided drug design, it suffices to compute the relative aftin- 
ity of different molecules for the same receptor. Because 
the bound conformation of the receptor is often similar for a 
range of ligands 1251, it will be a good approximation to 
keep much of the receptor rigid when computing relative 
afflniries in these cases. 

The limited integrals that remain after these sim- 
plifications may be estirr-l.red by a set of methods that we 
call predominant-states approximations [26,27]. These 
assume that the integrals are dominated by contributions 
from a set of low-energy conformations (Fig. 1) which can 
be identified by optimization methods. If N important 
energy minima are identified, then the configuration 

Construction of models of binding from some 
specific implementations of the four 
components defined in the text. Potential 
function citations are in the ted; Dist:Dep. 
Die,., distance dependent dielectric function; 
ASP, atomic salvation parameters 1451; 
GEVSA, generalized !3orn/surface area model 
1491; PB/y. Poisson-Boltzmannl surface 
tension model 1481; Null model WW21; MTK. 
modified Tanford-Kirkwood model 1541: Dist: 
Dep. Perm., distance-dependent permittivity 
model [651; PB Models, Poisson-Boltzmann 
models of titration (citations in text); 
FEWMCTI, free energy perturbation or 
multiconfiguration thermodynamic integration 
free-energy simulations (citations in text); 
Global Min., global minimum; Harmonic 
Approx., harmonic approximation I761; ‘Mining 
Minima; predominant-states method cited in 
[271; Config. bias MC, configurational bias 
Monte Carlo (citations in teat). 
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integral Z can be approximated as a sum of contributions 
from the energy minima. Furthermore, Monte Carlo 
methods can be used to account for conformations 
outside the Nenergy minima [27]. 

Systematic construction of tractable models of binding 
Predominant-stares models for computing the,standard free 
energy of binding involve identifying the major minima 
of the energy function U + Wand evaluating their contribu- 
tions to the configuration integrals of the receptor, the 
ligand and the complex. The four chief components of such 
models are as follows: a means of estimating the potential 
energy, U, a means of estimating the salvation energy, W; 
a treatment of protonation equilibria; and a means of cvah- 
aring the configuration integrals, Z. More than one imple- 
mentation is already available for each component and a 
specific model of binding can be constructed from any 
combination of these implementations (Fig. 2). It should 
be noted that each component of a specific binding model 
can be tested independently because these components 
are physically meaningful. Below we discuss each ~of the 
four components. 

The methods for estimating the potential energy, l7, ~of a 
molecule are currently the most mature of the model com- 
ponents listed below. A number of research groups have 
developed potential energy functions for use in molecular 
simulations; these include the AMBER [28], CEDAR 
[29,301, CHARMM [311, CFF [32-341, GROMOS L3.51, 
MM [36-3X] and MMFF I.391131 force fields. Some of 
these have been substantially revised and improved since 
their first releases and further enhancements and exten- 
sions will undoubtedly be forthcoming. Although our own 
prototype binding calculations use the CHARM&l energy 

Mode, 

Solvent model, W 
Protonation Configuration integrals 

-- 

Sum over minima 



function, it will be important to test the performance of 
various energy functions in binding calculations. 

The salvation energy function, W 
Implicit solvent models suppress the degrees of freedom of 
the solvent and make them implicit in the salvation term, 
W. This term is essentially the work of transferring the 
solute, in a given conformation, into solvent [ZZ]. Implicit 
solvent models have improved dramatically in the last S-10 
years and arc currently the subject of inrensivs research in 
several laboratories. Existing implicit solvent models 
include: hydration shell and r&ted models [4W61; models 
based upon a combination of electrostatic and nonpolar sol- 
vation terms [47-SO]; and the SMx models [St], which 
include contributions from several types of solute-solvent 
interaction. Many of these models provide good agreement 
with the mcasured free energies of s&&an for small mole- 
cules, suggesting that implicit models of solvent can serve 
well in models of binding. In fxx, it is somewhat surprising 
that so many disparate solvent mod& perform well for 
small molecules. This could be a result of the simplicity of 
the shapes of small molecules. Calculations of the hinding 
interaction between two larger molecules may test solvent 
models more stringently, because such complexes often 
possess cracks and crevices that can sequester solvent mole- 
cules. Ultimately, it might prove necessary to employ a 
hybrid model of the solvent in which a small number of 
explicit solvent molecules occupy specific binding sites 
while the bulk of the solvent is treated implicitly [22,.52]. 

Protonation equilibria 
Models for promnation equilibria have been established 
at various levels of detail and computational speed (for 
review, see 1531). These include models based upon free 
energy simulations 154-571, upon the linearized Poisson- 
Boltzmann (PB) equation [S&64], and upon distance- 
dependent solvent pzrmitriviries [65]. Perhaps the sim- 
plest relevant model assumes that the pK, of a ritrarable 
group in a biomolecule is the same as that of a chemically 
similar group in bulk solvent. This ‘null model’ is oftzn 
used by default, and is fairly accurate [hZ]. Indeed, the null 
model is more accurate than some computationally intcn- 
sive alternatives [53], highlighting the need to validate 
computer models of hiomolecules. 

Predominant-states methods estimntc configuration inte- 
grals as xums of contributions from energy minima. These 
methods can rake advantage of the ingenious algorithms 
chat have been devised for identifying energy wells on 
the multidimensional energy surfaces of small molecules 
and protrins. Predominant-states mzthods may be 
implemented at several levels of approximaiion. 

In the most accurate predominant-states methods, the 
contributions of the low energy valleys surrounding the 

major energy minima arc evaluated in derail [27]. The 
sum of these contributions is an estimate of the overall 
configurational integral. A supplementary contribution 
f&m conformations outside the major energy wells may 
be computed by means of a Metropolis Monte Carlo cal- 
culation [27]. This +proach has been shown to he 
tractable and to yield numerically accurate configuration 
integrals for isolated alanine polypeptidcs and cyclic urea 
inhibitors of HIV-1 protease [27]. Our unpublished 
results also show that the algorithm is tractable for calcu- 
lations involving a cyclic urea in the binding site of HIV-1 
protease [66], and B nonpolar ligand in a cavity in T4 
lysozyme [67]. Another accurate algorithm for computing 
configuration integrals by sampling within energy 
minima has been successfully applied to several small- 
molecule systems (I. Kollossvary, personal communica- 
tion). A less detailed predominant-states approximation 
that assumes all energy wells to be harmonic has yielded 
promising results in a study of inhibitor binding by 
rhrombin [68]. 

If one makes the simplifying assumptions that all energy 
minima arc similar in shape and that they are separated by 
high energy barriers, thcrc is no need to examine the 
shapes of the energy wells, and the ratios of configuration 
integrals in Equation 2 may be computed in terms of sums 
of the Boltzmann factors at the minima. Such an approxi- 
mation has been used in calculations for a host-guest 
system [69] and for the interactions of analytcs with chro- 
matographic surfaces 1701. Finally, it might be assumed 
that only the global energy minimum for each molecular 
species makes an important contribution to the free 
energy. This approximation, which makes it unnecessary 
to find any other energy minima, may be appropriate for 
rigid molecules with a single binding mode, In this limit, 
the predominant-stares model essentially becomes a 
simple energy-component model of binding. 

So far, we have emphasized the use of predominant-states 
methods for computing AC”, hut two other approaches 
deserve to he mentioned. First, configuration integrals 
for systems of modest size can be computed by config- 
urational bias Monte Carlo methods [71-731. Such an 
approach has been used to compute configuration inte- 
grals for alkanes up to C,, in a zeolite [74], and a configu- 
rational bias method has recently been used co identify 
stable conformations of cyclic pcptides [75]. Second, ther- 
modynamic integration methods [3-IO] could he used to 
compute AG” with a continuum solvent model and a 
small set of solute degrees of freedom. These methods 
might prove somewhat inefficient, because they require 
the system to bc equilibrated for a series of artificial 
states between the starting and final states of interest. 
The predominant-states and configurational bias Monte 
Carlo methods require calculations for only the free and 
bound states. 
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Validation 
Any computationally tractable model of binding involves 
approximations and therefore requires validation. The 
models discussed here have two advantages with regard to 
validation. First, rhcy are computationally efficient and 
will permit extensive and systematic comparison with 
experimental data. The sratisrics obtained in such studies 
nor only indicate the reliability of the model, but can also 
reveal unexpected trends that motivate further scientific 
study (see, c.g. [62,631). Second, the ptesent models are 
based upon statistical thermodynamics, and their compo- 
nenrs (e.g. the solvent model, W) can be developed and 
tested independently. As a consequence, the strengths 
and waknesses of a given model can be analyzed in a 
meaningful way. 

This article has outlined a class of models of binding that 
have a clear foundation in statistical thermodynamics, and 
yet are computationally tractable. A central feature of these 
models is the USC of thorough conformational sampling 
over a modest numbcr of essential degrees of freedom. 
This approach yields converged results in tolerably short 
computational times. ‘l‘he models are physically inter- 
pretable, because they xe assembled from well-defined 
components that can be tested. In addition, the efficiency 
of these models will enable statistically significant valida- 
tion studies to be carried out. It should therefore be possi- 
ble to provide users with practical and well-characterized 
computstional tools. These will be valuable in a range of 
applications, including srructurc-based drug design, 
host-guest chemistry, and enzyme engineering. 
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