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Models for predicting the binding affinities of
molecules in selution are either very detailed, making
them computationally intensive and hard to test, or
very simple, and thus less informative than one might
wish. A new class of models that focus on the
predominant states of the binding molecules promise
to capture the essential physics of binding at modest
computational cost.
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“...there is a balance between admitting enough of the complexity of
reality into a problem for it to be interesting, while keeping the chunk
of reality simple enough or small enough so that it can be modeled. A
completely understood (ar ‘reduced’) problem is boring, but a realistically
complex one is frustrating” (M. Reppy, quoted in [1}).

The noncovalent association of molecules in solution
is of ceniral importance in biology and chemistry, and
predicting binding affinities i1s a long-standing problem
in computational chemistry. A new class of computer
models for predicting binding affinities is now emerging
from research in a number of laboratories. These ‘pre-
dominant-states’ models teat solvent implicitly and
sample over only a modest number of solute degrees of
freedom. This makes it possible to approximate the
binding affinity as d sum of contributions from the low
energy conformations of the complex and the free
molecules. It is anticipated that these models will be
computationally efficient while still capturing the
essential physical chemistry of binding. This asticle ous-
lines the motivation, form and expectations for this class
of models.

Why seek new models of noncovalent association?

Living matter is neither liguid nor solid. It consists of a
broad dispersion of organic molecules in.an aqueous
medium, organized into highly specific noncovalent com-
plexes. To understand the physical chemistry. of biologi-
cal systems, we must first understand the noncovalent
association of moleculies.
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In an important subset of biological association reactions, a
small ligand, L, binds to a larger receptor molecule, R:

R+L = RL Equation 1
The greater the affinity of the two molecules for each
other, the lower the standard free energy of binding, AG®,
Examples of receptor-ligand binding include the recogni-
non of substrates by enzymes, the action of biological
transmitters at their protein receptors, the inhibition of
enzymes by drugs and, in nonbiological systems, the
recognition of guest molecules by syntheric hosts. Thus,
models for receptor—ligand binding are useful in many
areas, including enzyme engineering, drug design, and the
design of synthetic hosts for use in chemical separations.
Considerable progress has been made in developing com-
putational methods for predicting receptor-ligand affini-
ties. There is still much room for improvement in these
methods, however.

Most existing methods of computing free energies of
binding are either very detailed or highly simplified {2].
The detailed methods, free-energy simulations, typically
involve molecular dynamics simuiations in which many
solute and solvent molecules are treated as mobile. They
therefore involve conformational sampling over thousands
of degrees of freedom [3-10]. Because these methods rep-
resent the system in detail, it is reasonable to expect them
to be quite accurate. For the same reason, however, they
are computationally intensive and are subject to conver-
gence problems [11,12). This, makes it difficuit to assess
the accuracy of free-energy simulations by systematically
comparing their results with experimental data.

The simplificd methods of computing free energies of
binding are essentially phenomenological in nature. They
avoid convergence problems by using a single, rigid
conformation of the ligand-recepter complex [2,13-21],
and involve no conformational sampling at all. The free
energy of binding is taken to be a sum of energy compo-
nents associated with ligand-receptor interactions, such
as hydrogen bonds and hydrophobic contacts. Additional
terms, analyzed elsewhere [22], account for the changes
in solute entropy due to the loss of mobility upon binding.
The various energy components are typically not derived
explicitly from the underlying statistical thermodynamics
[22), and the parameters of the models are often deter-
mined from binding data in a statstical manner. Thus
These models can be difficult ro interpret in physical
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terms. Also, it seems inevitable that the accuracy of their
predictions will be sharply. limited by the neglect of
conformational flexibility.

Is it possible to devise models of binding that are
grounded in statistical thermodynamics, that allow for con-
formational flexibility, and that are nonetheless compura-
tionally tractable? Below, we outline a class of models that
has these properties.

A middle ground for models of binding

Between the extremes of free-energy simulations and
energy-component models, there lies a broad middle
ground with ample room for models of intermediate com-
plexity that would retain many of the advantages of the
two approaches described above. One class of models,
which we term ‘predominant-states models’, combines the
judicious selection of 2 modest set of degrees of freedom
with aggressive conformational sampling to identify the
low-energy conformations of the complex and of the free
molecules. These conformations can be used to estimate
the scandard free energy of binding (see below). The
number of explicit degrees of freedom requiring sampling
is kept small by using implicit models of the solvent
In addition, only those parts of the receptor and ligand
that are most likely to change conformation upon binding
are treated as flexible. Such methods should allow compu-
tations of binding affinities to converge in a matter of hours
or days. Models of this type capture more of the physical
chemistry of binding than energy-component models and
cost less computer time than current free-energy simula-
tions. The efficiency of these models will make it possible
to define their accuracy and range of applicability through
extensive comparisons with experiment. It should there-
fore be possible to establish well-characterized tools for
molecular design and the interpretation of experimental
data. The following sections discuss the theoretical basis
for predominant-states models of binding, the formulation
and validation of specific models, and the expected
obstacles and gains associated with this approach.

Theoretical basis for predominant-states binding models
Statistical thermodynamics dictates that the affinity of a
ligand for a receptor is direetly related to configuration
integrals that range over all possible conformations of the
separate molecules and of the complex (for review, see
{22]). The standard free energy of binding can be written
to within a constant as:

"AG=-RT n(C ~ZZR]I_) Equation 2

RAT,

where C° is the standard concentration, usually i M, R is
the gas constant, T is the temperacure and Zy, Z; and Zy;
are the configuration integrals of the receptor, the ligand,
and the complex, respectively. A configuration integral 2

is the integral of a Boltzmann factor over all conformations
of the molecule or complex:

-U()+W(r)/RT .
fc ' dr Equation 3

Here, U(r) and W{r) are the potential energy and solvation
eneigy, respectively, of the molecule or complex in a given
conformation specified by coordinates r. it should be noted
that for the complex, the coordinates r specify not only the
conformation of the recepror and the ligand, but also the
relative position and orientation of the two molecules. The
solvent term, WAr), is a potential of mean force that incor-
porates the influence of solvent molecules. It impliciily
includes addinional configuration integrals over solvent
degrees of freedom [22], The largest contributions to the
configuration integrals in Equation 3 correspond to confor-
mations with large Boltzmann factors; that is, conformations
of low energy U/ + W. For biomolecules, the binding affinity
often depends upon the pH of the solvent; in other words,
upon the chemical potential of the proton. In such cases,
the thermodynamic link between binding and protonation
can be accounted for in Equation 2 by using a binding
polynomial [22-24]. The binding polynomial essentially
replaces the configuration integrals of R, [ and RL by sums
of configuration integrals over protonation states {22].

Figure 1

A few of the possible conformations of a receptor-ligand complex
contribute most of the binding energy. Bottom, a schematic two-
dimensional surface representing the energy as a function of the
conformation of the complex. Although the energy surface is
complicated, the corresponding Boltzmann factor, top, is.dominated by
a small set of low-energy conformations, the predominant states.




Although the standard free energy of binding is written
compactly in Equation 2, this quantity is difficult to
evaluate because the integrals range over an enormous
number of possible conformations. This problem may be
addressed by fixing many internal coordinates of the
ligand-receptor system in a single predominant conforma-
tion and treating only the remaining coordinates as flexi-
ble. This is a good approximation as long as the
probability distribution of the fixed coordinates does not
change much upon binding [22]. It is usually necessary to
treat the entire small molecule as flexible, although much
of a large receptor may be treated as rigid. Bond lengths
and angles may also be treated as fixed if their change
upon binding is small [22]. Thus intractable configuration
integrals over hundreds or thousands of degrees of
freedom may often be replaced by tractable integrals over
a few dozen essential degrees of freedom.

Seme receptors do change conformation significantly upon
binding a ligand, making it difficult to corpure the binding
energy. However, in many applications, such as computer-
aided drug design, it suffices to compute the relative affin-
ity of different molecules for the same receptor. Becausc
the bound conformation of the receptor is often similar for a
range of ligands [25], it will be a good approximation to
keep much of the receptor rigid when computing relative
affinities in these cases.

The limited integrals that remain after these sim-
plifications may be estimated by a set of methods that we
call predominanc-states approximations [26,27]. These
dssume that the integrals are dominated by contributions
from a set of low-energy conformations (Fig. 1) which can
be identified by optimization methods. If N important
encrgy minima are identified, then rhe configuration
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integral Z can be approximated as a sum of contributions
from the energy minima. Furthermore, Monte Carlo
methods can be used to account for conformations
outside the N energy minima [27].

Systematic construction of tractable modeis of binding
Predominant-states models for computing the standard free
energy of binding involve identifying the major minima
of the energy function {/ + Wand evaluating their contribu-
tions to the conliguration integrals of the receptor, the
ligand and the compiex. The four chief components of such
models are as follows: a means of estimating the potential
energy, {/; a means of estimating the solvation energy, W;
a treatment of protonation equilibria; and a means of evalu-
ating the configuration integrals, Z. More than one imple-
mentation is already available for each component and a
specific model of binding can be constructed from any
combination of these implementations (Fig, 2). It should
be noted that each component of a specific binding model
can be tested independently because these componcnts
are physically meuningful. Below we discuss each of the
four components.

The potential energy function, U

The methods for estimaring the potential energy, U, of a
molecule are currently the most mature of the model com-
ponents listed below. A number of research groups have
developed potential energy functions for use in molecular
simulations; these include the AMBER [28], CEDAR
[29,30], CHARMM [31], CFF [32-34], GROMOS [35],
MM [36-38] and MMFF [39-43] force fields. Some of
these have been substantially revised and improved since
their first releases and further enhancements and exten-
sions will undoubredly be forthcoming. Although our own
prototype binding calculations use the CHARMM energy

Figure 2

Construction of models of binding from some

specific implementations of the four Potential function, U
components defined in the text. Potential

function citations are in the text; Dist.-Dep. AMBER
Diel., distance dependent dielectric function; CEDAR
ASP, atomic solvation parameters [451;

GB/SA, generalized Bom/surface area model CHARMM
[49]; PB/v, Poisson—Beltzmann/ surface CFF
tension model [48]; Null madel [53,62]; MTK, Model= 4 ROMOS
modified Tanford—Kirkwood modei [54]; Dist.-

Dep. Perm., distance-dependent permitlivity MM
modei [65]; PB Models, Poisson—Boltzmann MMEF
madels of titration (citations in text); .
FEP/MCT, free energy perturbation or

multiconfiguration thermodynamic integration

free-energy simulations (citations in text};
Global Min,, global minimum; Harmonic
Approx., harmonic approximation {76]; 'Mining
Minima, predominant-states method cited in
[27]; Config. bias MC, configurational bias
Monte Carlo (citations in text).

Protonation Ceonfiguration integrals
/'—_.—r-/;ﬁﬁ_‘\

Solvent model, W

Dist -Dep. Diel, Null model Gilobal min,
ASP MTK Sum over minima
« GBISA Dist.-Dep. Perm Harmonic approx.
PBY PB models "Mining Minima'
. FEP/MCTI Config. bias MC
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function, it will be important to test the performance of
various energy functions in binding calculations.

The solvation energy function, W

Implicit solvent models suppress the degrees of freedom of
the solvent and make them implicit in the solvation term,
W. This term is essendally the work of transferring the
solute, in a given conformation, into solvent [22]. 1mplicit
solvent models have improved dramatically in the last 5-10
years and are currently the subject of intensive research in
several laboratories. Existing implicit solvent models
include: hydration shell and related models [44-46]; models
based upon a combination of electrostatic and nonpolar sol-
vation terms {47-50]; and the SMx meodels [51), which
include contributions from several types of solute—solvent
interaction. Many of these models provide good agreement
with the measured free energies of solvation for small mole-
cules, suggesting that implicit models of solvent can serve
well in models of binding. In fact, it is somewhat surprising
that so many disparate solvent models perform well for
small molecules. This could be a result of the simplicity of
the shapes of small molecules. Calculations of the binding
interaction between two larger molecules may test solvent
models more stringently, because such complexes often
possess cracks and crevices that can sequester solvent mole-
cules. Ultimately, it might prove necessary to employ a
hybrid model of the solvent in which a small number of
explicit solvent molecules occupy specific binding sites
while the bulk of the solvent is rreated implicitly [22,52).

Protonation equilibria

Models for protonation equilibria have been established

at various levels of detail and computational speed (for
review, sce [53]). These include models based upon free
energy simulations [54-57], upon the linearized Poisson—
Boltzmann (PB} equation [58-64], and upon distance-
dependent solvent permitcivities 165]. Perhaps the sim-
plest relevant model assumes that the pK, of a titratable
group in a biomolecule is the same as that of a chemically
similar group in bulk solvent. This ‘null model’ is often
used by default, and is fairly accurate [62]. Indeed, the null
model is more accurate than some computationally inten-
sive alternatives [53], highlighting the need to validate
computer models of biomolecules.

Evaluation of configuration integrals

Predominant-states methods estimate configuration inte-
grals as sums of contributions from energy minima. These
methods can take advantage of the ingenious algorithms
that have been devised for identifying energy wells on
the multidimensional energy surfaces of small molecules
and proteins. Predominant-states methods may be
implemented at several levels of approximation. .

In the most accurate predominani-states methods, the
contributions of the low energy valleys surrounding the

major energy minima are evaluared in detail [27]. The
sum of these contributions is an estimate of the overall
configurational integral. A supplementary contribution
from conformations outside the major energy wells may
be computed by means of a Metropolis Monte Carlo cal-
culation [27]. This approach has been shown to be
tractable and to vield numerically accurate configuration
integrals for isolated alanine polypeptides and cyclic urea
inhibitors of HIV-1 protease {27]. Our unpublished
results also show that the algorithm is tractable for calcu-
lations involving a cyclic urea in the binding site of HIV-1
protease [66], and a nonpolar ligand in a cavity in T4
lysozyme [67]. Another accurate algorithm for computing
configuration integrals by sampling within  energy
minima has been successfully applied to several small-
molecule systems (1. Kollossvary, personal communica-
tion). A less detailed predominant-states approximation
that assumes all energy wells o be harmonic has yielded
pronusing results in a study of inhibitor binding by
thrombin [6&].

If one makes the simplifying assumptions that all energy
minima are sirnifar in shape and that they are separated by
bigh energy barriers; there is no need to examine the
shapes of the energy wells, and the ratios of configuration
integrals in Equation 2 may be computed in terms of sums
of the Boltzmann factors at the minima. Such an approxi-
mation has been used in calculations for a host—guest
system [69] and for the interactions of analytes with chro-
mategraphic surfaces [70]. Finally, it might be assumed
that only the global energy minimum for each molecular
species makes an important contribution to the free
energy. T'his approximation, which makes it unnecessary
to find any other energy minima, may be appropriate for
rigid molecules with a single binding mode, In this limit,
the predominant-states model essentrally becomes a
simple energy-component model of binding,

So far, we have emphasized the use of predominant-states
methods for computing AG®, but two other approaches
deserve to be mentioned. First, configuration integrals
for systems of modest size can be computed by config-
urational bias Monte Carlo methods [71-73]. Such an
approach has been used to compute configuration inte-
grals for alkanes up to G, in a zeolite [74], and a configu-
rational bias method has recently been used to identify
stable conformations of cyclic peptides [75)]. Second, thes-
modynamic integration methods [3-10] could be used to
compute AG® with a continuum solvent modei and a
small set of solute degrees of freedom. These methods
might prove somewhat inefficient, because they require
the system to be equilibrated for a series of artificial
states between the starting and final states of interest.
The predominant-states and configurational bias Monte
Carlo methods require calculations for only the free and
bound states,



Validation

Any computationally tractable model of binding involves
approximations and therefore requires validation. The
models discussed here have two advantages with regard to
validation. First, they are computationally efficient and
will permit extensive and systematic comparison with
experimental data. The statistics obtained in such studies
not only indicate the reliability of the model, but can also
reveal unexpected trends thar motivate further scientific
study (see, e.g. {62,63]). Second, the present models are
based upon statistical thermodynamics, and their compo-
nents (e.g. the solvent model, W} can be developed and
tested independently. As a consequence, the strengths
and weaknesses of a given model can be analyzed in a
meaningful way.

Conclusions

This article has outlined a class of models of binding that
have a clear foundation in statistical thermodynamics, and
yet are compuiacionally tractable. A central fearure of these
models is the use of thorough conformational sampling
over a modest number of essential degrees of freedom.
This approach yvields converged results in tolerably short
computational times. The models are physically inter-
pretable, because they are assembled from well-defined
components that can be tested. In addition, the efficiency
of these models will enable statistically significant valida-
tion studies to be carried out. It should therefore be possi-
ble to provide users with practical and well-characterized
computational tools. These will be valuable in a range of
applications, including structure-based drug design,
host—guest chemistry, and enzyme engineering.
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